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L iquid Crystals, 1998, Vol. 24, No. 3, 419 ± 425

Model of a disclination core in nematics

by IMMACOLATA SIGILLO, FRANCESCO GRECO*,
and GIUSEPPE MARRUCCI

Dipartimento di Ingegneria Chimica, UniversitaÁ di Napoli, P.le Tecchio,
80-80125 Napoli, Italy

(Received 9 June 1997; in ® nal form 8 September 1997; accepted 27 September 1997 )

The core structure of a disclination line of strength +1 in uniaxial nematics is determined by
using a space-dependent mean-® eld approach somehow based on the rod-like molecular
model. It is shown that, due to distortion, biaxiality arises at all points of the defect core,
except at the centre line where symmetry dictates uniaxiality; the orientational distribution
of the rod-like molecules is there òblate’, however. Although, as is well known, the
con® guration of a +1 defect is stable only under limiting conditions (as compared with either
escaping in the axial direction or splitting into two 1/2 lines), the simple example developed
here is indicative of a method which can readily be extended to more realistic, if mathematically
more complex, situations such as Ô 1/2 lines, layers close to solid boundaries, etc.

1. Introduction rod-like `molecules’ are packed within a simulation
volume, with suitable prescriptions on their orientationUnless special preparation techniques are used,

nematic samples usually exhibit a p̀olydomain’ texture, at the boundary [9± 11]. The system is then made to
relax, and the most stable equilibrium con® gurationi.e. a patchwork of nematic regions (domains). At certain

points or lines in the polydomain, discontinuities of the is automatically attained. Though straightforward in
principle, these simulations remain extremely time con-director ® eld (see, e.g. reference [1] ) are observed, which

are the d̀efects’ of the nematic phase. These discontinuities suming, so that only systems made up of a relatively
small number of units can be handled, and often somecannot be dealt with in the context of Frank’s theory

[2]: in order to gain some understanding of the structure limitations on the degrees of freedom must also be
introduced [11]. There is room, therefore, for a di� erentof the defect c̀ores’, we must resort to a more complex

description of the nematic state. `molecular’ approach, based on distribution functions
[12].A di� erent approach to non-polar anisotropy was

More speci® cally, the molecular organization istaken long ago by de Gennes [3], in relation to the
described in [12] by means of a space-dependent, one-nematic ¯ uctuations of the isotropic phase close to the
particle distribution function. Nematogenic interactionsnematic transition. In de Gennes’ description, the local
are then accounted for at a mean-® eld level, by suitablyorientation and degree of order are given by means of a
generalizing the standard Maier± Saupe expression [13](second rank) order parameter tensor, representing the
to a spatially dependent, non-uniform situation. The® rst signi® cant term of the expansion around isotropy.
formulation allows for arbitrarily large distortions ofIn later work, the free-energy expression due to de
the nematic phase, well beyond the Frank limit, thusGennes has also been applied to the nematic state, in
encompassing defect cores.particular to determine the core structure of several

The only defect structure which has been so farkinds of defects [4 ± 6]. Of course, since the ground
explicitly solved by using the distribution functionstate is no longer isotropic in these cases, the free
approach is that of the so-called h̀edgehog’ point defectenergy expression due to de Gennes can only be used
[14]. Because of the symmetries of this defect, theas an approximation. This point has been discussed
nematic phase preserves uniaxiality in the defect core,elsewhere [7, 8].
though the order is strongly modi® ed. The uniaxialA di� erent way of tackling the defect core problem
character of the distorted nematic in the hedgehog defecthas emerged in recent years, when the availability of
is exceptional, however. Distortion-induced biaxiality ishigh performance computers made it possible to simulate
expected to be ubiquitous within defect cores [15, 16].many-body systems. For the case at hand, nematogenic
In this paper we report the results obtained with our
mean-® eld approach for the simplest example of biaxial*Author for correspondence.
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420 I. Sigillo et al.

molecular arrangement in a defect core, namely that of the spherical R-neighbourhood whose molecules are
àctive’ on the test-rod u. {Note that, in the Frank limit,a line defect of strength +1. We are fully aware that

such a defect is rarely encountered in nematics, either equation (2) corresponds to the one constant approxi-
mation. Di� erent mean-® eld potentials generating threebecause of èscaping’ or because of s̀plitting’ [17]; a

brief discussion on this aspect is postponed to the end distinct elastic constants can be obtained, at the expense
of heavier mathematics, by choosing more realisticof the paper. However, the simple example shown here

illustrates the method for future generalizations to other shapes of the test-rod neighbourhood [12].}
Because we only deal with equilibrium situations,more realistic defect situations.

The paper is organized as follows. A tensorial equation albeit distorted by defects, the distribution function must
be Boltzmannian, i.e. f 3exp (Õ V /kT ) . We then rewriteof nematostatics, previously derived [14], is recalled

in § 2, and particularized to the line defect case in § 3, equation (1) as:
where the relevant boundary conditions are also given.
Section 4 reports the results obtained, which are brie¯ y
discussed in the last section. Some algebraic details are

S =
P dVuu exp[U (S + l

2
=

2
S ) : uu]

P dV exp[U (S + l
2
=

2
S ) : uu]

. (3 )con® ned to a short Appendix.

2. Field equation of nematostatics

We use here the simplest model of a nematogenic
[The denominator in equation (3) is the normalizationmolecule, which is the rigid rod. Because no internal
factor of the distribution.] Hence, the equilibrium prob-degrees of freedom are present, the con® guration of a
lem reduces to that of determining the tensor ® eld S (R )rod is given by specifying its position R and its orientation
which is the solution of the functional self-consistency

u. A population of rigid rods is described by means of
equation given in equation (3). Of course, suitablea space-dependent orientational distribution function
boundary conditions must also be prescribed.

f (u, R ) which gives the probability density that a rod
The mathematical problem is greatly simpli® ed if thelocated at R is oriented along u. The emphasis on

assumption is made that the magnitude of the secondòrientational’ is due to the fact that R is here seen as a
term in equation (2) is small, so that exp(Ul

2
=

2
S : uu)parameter, not as a variable of the distribution. In other

can be expanded. It should be noted that the assumedwords, ¯ uctuations in density are ignored.
smallness of the Laplacian term in (2) should not beAll macroscopic observables can be calculated as
confused with the assumption of weak distortions.weighted averages over the distribution function. Of
Indeed, while the latter implies asymptotically smallspecial relevance in what follows is the second order
deviations of the eigenvalues of S from the undistortedmoment S of the distribution:
situation, the assumption made here only requires that
spatial variations are small, with no presumption on the

S ; 7 uu 8 ; P dV f (u , R) uu (1 ) local d̀istance’ from the undistorted equilibrium. In
other words, a truncated expansion of the distribution

where dV is the di� erential solid angle c̀entred’ at u. function is assumed at any point, where the g̀round
Needless to say, S generally remains dependent on R . state’ is the local state, whatever the latter may be [8].
As we shall see, tensor S is also generally biaxial. In the When the expansion is made we obtain, after some
undistorted equilibrium, however, S is both constant in calculations [14]:
space and uniaxial about the director n. As regards the
scalar order parameter S, this is unambiguously de® ned S =P +Ul

2
(Q Õ PP ) : =

2
S (4 )

in the uniaxial case only, and it is calculated through
where:the contraction S : nn. For the distorted biaxial situation,

two order parameters are needed, which are linked to
the eigenvalues of S .

Tensor S is su� cient to express the simplest possible
P =

P dVuu exp (US : uu)

P dV exp (US : uu)

(5 )generalization of the standard Maier± Saupe potential to
distorted situations [12, 14]. The mean-® eld potential
acting at position R on a rod oriented along u is given
by

V (u , R) =Õ kT U (S + l
2
=

2
S ) : uu (2 )

Q =
P dVuuuu exp (US : uu)

P dV exp (US : uu)

. (6 )
where UkT is the potential intensity, and l is a charac-
teristic interaction length, measuring the dimension of
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421Model of disclination core

Since both tensors P and Q depend on S , equation (4)
is a non-linear integro-di� erential equation for S itself.
Equation (4) is the general equation of nematostatics,
corresponding to the choice made in (2) for the mean-
® eld potential. Needless to say, Maier± Saupe formulation
is recovered from equation (4) when considering the
undistorted case. On the other hand, highly distorted
nematic con® gurations such as those arising in defect
cores (or close to con® ning walls) can be dealt with by
using equation (4).

Let us conclude this section by writing down the
expression for the free energy density a (R ) in terms of
S , which will prove useful later in the paper. Calling v

Figure 1. Schematic representation of a +1 line defect (dashedthe number of molecules per unit volume, the following
line), with radial (a) and tangential (b) con® gurations for

formula applies [18]: the director ® eld.

a ( R) = vC kT 7 ln f (u, R) 8 +
1

2
7 V (u, R) 8 D (7 )

Implicit in the de® nition of S , equation (1), is a unit
trace constraint, which then requires:

where the logarithmic term is the entropic contribution
S
rr

+S
hh

+Szz=1. (10)to free energy, and the energetic density (the second term)
requires a factor 1/2 because of the mean-® eld nature of In view of the assumed cylindrical symmetry (no splitting
the potential. By substituting equation (2) into (7), and of the defect line), all the components S ij do not depend
by using again the small gradient approximation, we

on h and z. Thus, we are left with ® ve unknown functions
obtain:

of the radial variable r only. However, since escape in
the z-direction has been excluded, and our boundary
conditions also prevent spiral con® gurations, the prob-a ( R) = vkTC Õ lnA P dV exp (US : uu)B lem is further simpli® ed because the eigenvectors of
tensor S everywhere coincide with the unit vectors of

+
U

2
S : S +Ul

2 A 1

2
S Õ PB : =

2
S D. (8 ) the cylindrical geometry. We can then write:

S =S
rr

(r) q q +S
hh

(r) h h +Szz(r)zz (11)
Equation (8) allows one to calculate the free energy

so that [recalling equation (10)] the computation of thedensity of a nematic sample once tensor S has been
tensor ® eld S is ® nally reduced to the determination offound from equation (4).
two scalar functions of the radial variable r.

Di� erential equations for the functions S
rr

(r) and
S
hh

(r) (say) are readily derived from the general equation3. Equations for the line defect; boundary conditions

of nematostatics, equation (4), in the following way.Let us consider a nematic sample inside an in® nite
First, tensor S from equation (11) is substituted into (4 );cylindrical pipe, whose inner surface has been so treated
the resulting equation is then scalarly multiplied to theas to force a strong anchoring of the director in the
dyads rr and hh, respectively, to obtain:radial (or else in the tangential ) direction (see ® gure 1).

For such a boundary arrangement, and in the absence
S
rr

=P
rr

+Ul
2
R : =

2
S ; S

hh
=P

hh
+Ul

2
T : =

2
S

of escape or splitting, the director ® eld remains radial
(12)(or else tangential ) up to the pipe axis, where it is

unde® ned, giving rise to the line defect of strength +1 where P
rr

=P : q q , P
hh

=P : h h , and:
along the axis itself. In the present section we will show

R =Q : q q Õ P
rr

P; T=Q : h h Õ P
hh

P. (13)how equation (4) specializes for the case of a line defect.
Let us indicate the unit vectors of the cylindrical In order to obtain explicit expressions for the terms with

coordinates as q , h , and z. Tensor S will then be written the Laplacians in equation (12), we exploit: (i ) the
as: symmetry of the problem, whereby only the diagonal

terms of the tensors R and T need be considered; (ii ) the
S =S

rr
q q +S

hh
h h +Szzzz +S

rh
( q h + h q )

zero-trace condition of R and T [easily veri® ed from
equations (5), (6), and (13)] whereby only the components+S

r
z ( q z+ z q ) +S

h
z ( h z+ z h ) . (9 )
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422 I. Sigillo et al.

R
rr

, R
hh

, T
rr

, and T
hh

can be used. We thus obtain: self-consistency condition

S
rr

=P
rr

+Ul
2C (2R

rr
+R

hh
) =

2
S
rr

+ (R
rr

+2R
hh

) =
2
S
hh

S =
3

2

P
1

0
dx x

2 exp (USx
2
)

P
1

0
dx exp (USx

2
)

Õ
1

2
. (16)

Õ 2 (R
rr

Õ R
hh

)
S
rr

Õ S
hh

r
2 D (14 a)

From the order parameter S , the eigenvalues are thenS
hh

=P
hh

+Ul
2C ( 2T

rr
+T

hh
) =

2
S
rr

+ (T
rr

+2T
hh

) =
2
S
hh calculated as follows: S

rr
= ( 2S +1 )/3 , and S

hh
=Szz=

( 1 Õ S
rr

)/2 . As regards the boundary condition at the
centre of the defect we know that the derivatives of theseÕ 2 (T

rr
Õ T

hh
)

S
rr

Õ S
hh

r
2 D. (14 b)

eigenvalues must be zero.
We also know that S

rr
=S

hh
at the centre. As regardsStraightforward manipulations (see the Appendix) then

this condition, two distinct situations can be envisaged,lead to the equations
corresponding to either an oblate ( p̀ancake’) or prolate
( c̀igar’) shape of the ellipsoid representing tensor S . The
latter case, however, is expected to be energetically

d2
S
rr

dr
2 =Õ

1

r

dS
rr

dr
+

2

r
2 (S

rr
Õ S

hh
) +a (U, S

rr
, S

hh
)

d2
S
hh

dr
2 =Õ

1

r

dS
hh

dr
Õ

2

r
2 (S

rr
Õ S

hh
) Õ b(U, S

rr
, S

hh
)

unfavoured since, macroscopically, it would give rise to
a defect surface (instead of a defect line) located at that
radial position where the director changes from the
orientation of the cylinder axis to that in the rh plane.(15)
We thus expect to deal with the oblate case only, which

where a and b are known functions of S
rr

and S
hh

(see is identi® ed by Szz<S
rr

=S
hh

. This inequality, coupled
the Appendix), and r has been made non-dimensional to the unit trace condition, restricts Szz to the range
by taking the ratio to the interaction length l. Szz<1/3.

The boundary conditions for equations (15) are as The set of equations (15), together with the boundary
follows. At the capillary wall, i.e. far away from the conditions, constitute a two point boundary value problem .
defect line, we assume the undistorted uniaxial condition, To ® nd the solution, we adopted a standard technique
with the principal axis either along the radial or the known as the relaxation method [19], which requires
tangential directions, and the eigenvalues completely initial trial functions for the unknowns. In view of the
speci® ed by the assigned potential strength U . At the consideration of the previous paragraph, the trial values
defect centre, conversely, the eigenvalues of tensor S of S

rr
and S

hh
at the centre were taken to satisfy the

cannot be assigned beforehand, since their determination condition S
rr

=S
hh

>1/3. In any event, we veri® ed that
is part of the solution itself. The inner boundary con- di� erent choices for the trial functions (with a prolate
dition stems from symmetry alone, which forces the ® rst ellipsoid at the defect centre) did not alter the results of
derivatives to be zero at the cylinder axis. Inspection of the relaxation procedure, though convergence became
equations (15) shows that the zero-derivative condition signi® cantly slower. We concluded that, at any given U ,
also prevents the ® rst term on the rhs to diverge at r=0. the solution is indeed unique.

Further inspection of equations (15) also shows that In ® gure 2, solution of equations (15) for a capillary
the di� erence S

rr
Õ S

hh
must approach zero as r � 0. of radius 20 and for an intensity of the nematogenic

Hence, S
rr

=S
hh

at the line centre, i.e. tensor S again potential U =7 4́ (corresponding to a Maier± Saupe
becomes uniaxial, this time however with its symmetry order parameter S =0 6́ ) is shown. All three eigenvalues
axis along the defect line. In between the two uniaxial are plotted in ® gure 2. Moving away from the wall at
situations, i.e. the very special one at the centre line and r=20, distortion-induced biaxiality sets in, as shown by
the ordinary one in the far ® eld, we expect tensor S to the progressive splitting of the eigenvalues S

hh
and Szz .

be biaxial. A drastic drop in the S
rr

value simultaneously occurs in
a few units of length ( less then 10 from the axis), thus
identifying a defect c̀ore’ . In approaching the axis, an4. Results

ìnversion in biaxiality’ takes place, whereby |S
rr

Õ S
hh

|Let us consider the radial defect line, with the director
becomes smaller than |Szz Õ S

hh
|. The value of the Szz® eld at the pipe inner surface pointing radially. As

order parameter (Szz=0 2́6) which is found at the centrealready stated, we assume the undistorted state for tensor
quanti® es the expected ¯ attened shape of the S tensorS at the wall. Hence, for any given value of U , the

order parameter S at the wall is calculated through the ellipsoid (pancake-like): the rod population at the
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423Model of disclination core

Inspection of the S
rr

(r) and Szz(r) curves shows that a
reduction of the defect size occurs with increasing
ordering at the boundary. For the largest U , the wall
values of S

rr
and Szz persist up to approximately ® ve

length units from the axis, i.e. the defect line is essentially
con® ned. Conversely, for the lowest U , a region of
constant values close to the wall is no longer recognizable,
thus implying that some in¯ uence of the defect line
spreads radially throughout the sample, and that the
Frank elasticity asymptote is not reached anywhere in
such a s̀mall’ capillary. Figure 3 also shows that the oblate
ellipsoid representing S at the defect centre becomes
increasingly ¯ at with increasing order parameter at
the wall.

Figure 4 reports the non-dimensional free energy
density a (r) calculated from equation (8) for the same
value, U =7 4́, previously considered (see ® gure 2). For
the sake of comparison, the non-dimensional Frank
free energy aF=a0+US

2
/2r

2 is also shown in ® gure 4,
where a0 is the Maier± Saupe undistorted equilibriumFigure 2. Curves of all three eigenvalues of the order parameter

tensor S along the radial coordinate (non-dimensional ). free energy contribution. Several observations should
In kT units, the strength of the Maier± Saupe potential is be made here. In the ® rst place, it remains con® rmed
U =7 4́. that in a molecular approach the energy content of a

defect line is ® nite (which removes the Frank elasticity
defect centre is somehow lying down on the rh plane, divergence). The molecular approach shows how the
isotropically with respect to the z-axis. nematic order is modi® ed when approaching the defect

Figure 3 depicts the e� ect of the potential intensity U axis. The general feature is that of a weakening of
on the defect structure, for a capillary radius kept ® xed the nematic order. The spatial distortion modi® es the
at r =20. U =7, U =7 4́, and U =8 3́ were used, corres-
ponding to increasing values of the equilibrium order
parameter at the wall (S =0 5́, 0 6́, and 0 7́ respectively).

Figure 4. Plot of free energy density versus radial coordinate
(non-dimensional), calculated from equation (8) in the

Figure 3. E� ect of the strength U of the nematogenic potential text for the case U =7 4́ (see ® gure 2). Open dots represent
the corresponding Frank free energy, diverging at theon the defect structure. The core size decreases with

increasing U . defect centre.
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424 I. Sigillo et al.

molecular orientational distribution, rather than being were directly observed, though less numerous than Ô 1/2
lines [22]. On the simulation side, Chiccoli et al. [11]accumulated without bounds as in Frank elasticity.

A second comment concerns the shape of the com- performed Monte Carlo calculations of a cylindrically
con® ned nematic with homeotropic strong anchoring atputed total free energy curve which, at the defect centre

line shows a local minimum, then a maximum in a r̀im’ the boundary. Although this technique always gives the
most stable molecular arrangement, the escaped con-region, ® nally decaying towards the Maier± Saupe uni-

form value. This situation can be described loosely in ® guration was never obtained. The explanation of the
authors for such a result is that the radius used in theterms of a t̀wo phase’ system, where an ordinary nematic

phase ìncludes’ a weakly ordered central kernel, the simulations is not large enough. On the basis of our
results, we can con® rm this conclusion by calculatinginterface between them being located at the observed

r̀im’. In some sense, this was the original intuitive view the free energy per unit length of our defect line, and
comparing it with the free energy per unit length of theof the structure of a defect, where the kernel was assumed

to be made up of an isotropic phase [20]. More precisely, escaped con® guration which is known to be A =3pK ,
with K the elastic constant of the nematic [1]. Byour result shows that the energy density close to the

axis is that of the local oblate state of the nematic, which expressing K in terms of molecular quantities, starting
from the molecular interaction potential given byof course is di� erent from (and in fact lower than) the

energy density pertaining to the isotropic state. equation (2) (see ref. [12] ), we calculate A =6pUS
2 (in

non-dimensional units). For all cases considered in thisFinally notice that ® gure 4 con® rms the expectation
that Frank elasticity should be recovered at some small paper, these calculations show that the free energy is

lower in the presence of the defect line than it would bedistance from the centreline. Indeed, in our example the
two free energy density curves superimpose from r# 10 with the escaped con® guration. The smallness of the

capillary dimensions for the cases dealt with in thisonward. The slight separation between the curves
observed just at the wall ensues from having imposed paper should be appreciated, however. Since l #100 AÊ ,

and rw=20 (see ® gures 2± 4 ), our capillary radius isthe undistorted equilibrium value for the S tensor at a
® nite distance from the axis, whereas such a situation #0 2́ mm. Chiccoli et al. [11] also give a similar order

of magnitude for the capillary radius in their simulations.should only be recovered as r � 2. Further calculations
for larger capillaries (not reported here) show that indeed This state of a� airs changes for larger capillaries, because

the free energy for the escaped structure stays constant,the discrepancy at the wall between the two curves
disappears with increasing capillary radius. whereas that of the defect line grows logarithmically

with radius.
A ® nal remark concerns the relative simplicity of the5. Final remarks

Although all results of the previous section refer to approach pursued here, leading to equation (4). The
associated numerical calculations are incomparablythe radial con® guration of the line defect, the solution

also holds for the tangential con® guration if the role of faster than simulation techniques. All the computations
presented in this paper were run on a Pentium PC, andthe radial and tangential eigenvalues of tensor S is

inverted. Indeed, equations (15) still apply as long as the CPU time required to obtain the curves of the
eigenvalues (with a 10 Õ

3 relative precision) was less thanS
rr

and S
hh

are exchanged everywhere (also within the
functions a and b ), and a similar exchange is made in 1 h. It then seems quite feasible to deal with more

complex geometries (e.g. Ô 1/2 defect lines, where tensorthe boundary condition at the wall; hence the solution
remains the same with the two eigenvalues inverted. This S depends on two spatial coordinates), or to generalize

equation (4) by allowing for more complex forms ofsituation holds here because, as mentioned previously,
the simple potential in equation (2) corresponds to the interaction potential than that of equation (2).
one constant approximation of Frank elasticity. The results
are expected to change for more complex potentials Appendix
which discriminate between splay and bend. With reference to equation (14), let us de® ne:

A point which deserves further comment is the stability
problem, in particular with respect to the alternative
èscape in the third dimension’ frequently alluded to

A1=U ( 2R
rr

+R
hh

) , A2=U (R
rr

+2R
hh

) ,

A3=Õ 2U (R
rr

Õ R
hh

) , B1=U ( 2T
rr

+T
hh

) ,

B2=U (T
rr

+2T
hh

) , B3=Õ 2U (T
rr

Õ T
hh

) .

throughout the paper. In a recent review by KleÂ man
[21] reports of unescaped +1 lines are critically
examined, and some theoretical justi® cations for their (A1)
stability (based on unequal elastic constants) are also
advanced. In thin samples of polymeric liquid crystals, If B2 is multiplied throughout to equation (14 a), and

A2 to equation (14 b), and a subtraction is made, weunescaped +1 lines orthogonal to the bounding surfaces
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425Model of disclination core

obtain an equation where the only Laplacian term is To derive the expressions above, spherical polar coordi-
=

2
S
rr

. Similarly, by multiplying equation (14 a) by B1 , nates at any point (r, h, z) within the cylinder were used,
and equation (14 b) by A1 , and subtracting, we obtain with the polar axis parallel to the local unit vector q .
an equation with only =

2
S
hh

. To obtain equations (15) By calling c the azimuthal angle between q and u, it is
in the text, we then only need to divide both those x = q ¯ u =cos c.
equations by the quantity D =A1 B2 Õ A2 B1 (which has
been numerically veri® ed to be non-zero in all cases).
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